Optimal policy trees

نویسندگان

چکیده

We propose an approach for learning optimal tree-based prescription policies directly from data, combining methods counterfactual estimation the causal inference literature with recent advances in training globally-optimal decision trees. The resulting method, Optimal Policy Trees, yields interpretable policies, is highly scalable, and handles both discrete continuous treatments. conduct extensive experiments on synthetic real-world datasets demonstrate that these trees offer best-in-class performance across a wide variety of problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal 2, 3-Trees

The 2,3-trees that are optimal in the sense of having minimal expected number of nodes visited per access are characterized in terms of their "profiles". The characterization leads directly to a linear-time algorithm for constructing a K-key optimal 2,3-tree for a sorted list of K keys. A number of results are derived that demonstrate how different in structure these optimal 2,3-trees are from ...

متن کامل

Optimal Alphabetic Ternary Trees

We give a new algorithm to construct optimal alphabetic ternary trees, where every internal node has at most three children. This algorithm generalizes the classic Hu-Tucker algorithm, though the overall computational complexity has yet to be determined.

متن کامل

Optimal junction Trees

Finn V. Jensen Frank Jensen Department of Mathematics and Computer Science Aalborg University Fredrik Bajers Vej 7E, DK-9220 Aalborg st, Denmark E-mail: [email protected], [email protected] Abstract The paper deals with optimality issues in connection with updating beliefs in networks. We address two processes: triangulation and construction of junction trees. In the rst part, we give a simple algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2022

ISSN: ['0885-6125', '1573-0565']

DOI: https://doi.org/10.1007/s10994-022-06128-5